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Introduction. The history of what I have called “Parrondo’s phenomenon”—
a subject most commonly known in the by now quite extensive literature as
“Parrondo’s Paradox” or “Parrondo’s Game”—traces to a remark made by
the Spanish physicist Juan M. R. Parrondo in the course of a presentation
on the “Efficiency of Brownian motors” at a Workshop on Complexity and
Chaos that took place in Torino, Italy in July, 1996. In the long introduction
to a companion essay1 I have sketched the train of thought that—over the
course of more than twenty centuries—led from the philosophical speculations of
Democritus to 19th Century attempts to address the question “Are atoms
real?”, to the birth of Maxwell’s Demon, and finally, at the beginning of the
20th Century, to the Einstein-Smoluchowski theory of Brownian motion and to
Smoluchowski’s invention (1912) of the “Brownian ratchet,” which is a mindless
variant of Maxwell’s Demon intended to demonstrate how one might harness
the molecularly-induced Brownian motion of a paddle wheel to do work (and
why the simplest version of any such device is in fact bound ultimately to fail).
Chapter 46 (“Ratchet and Pawl”) in the first volume of Feynman’s Lectures on
Physics (1963) is based upon a lecture in which Feynman made pedagogical
use (without attribution) of Smoluchowski’s hypothetical device in an effort to
make intuitively plausible some of the fundamentals of thermodynamics. In
1996, Parrondo published a criticism of some aspects of Feynman’s argument,2
and it was that work that he discussed at the workshop mentioned above. The
train of thought that led from the thermodynamics of “Feynman’s ratchet” to
the discovery of “Parrondo’s Paradox” has, so far as I am aware, never been
detailed in print.

While the ratchets encountered in ratchet wrenches and clockworks are—
like those contemplated by Smoluchowski and Feynman—circular (and have
always a finite number of teeth), those encounted in auto jacks are linear, and
could in principle be infinitely long and have an infinite number of teeth. It
was with ratchets of the former type in mind that in Parrondo’s ratchet I was

1 Parrondo’s Ratchet I (January 2014).
2 Juan M. R. Parrondo & Pep Español, “Criticism of Feynman’s analysis of

the ratchet as an engine,” AJP 64, 1125-1130 (1996).
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led to consider random walks on the simplest non-trivial cyclic graph (order 3).
It is shown there that when the defining parameters are set to certain values a
certain property shared by the walks generated by Markov matrices A and B is
counterintuitively/“paradoxically” not shared by the walk generated by AB.

Parrondo and collaborators have, on the other hand, found it more natural
to draw their motivating imagery from unbounded linear ratchets, which leads
me here to consider random walks on the linear lattice Z. It must, however,
be admitted from the outset that random walks, whether on cyclic graphs or
Z, are not really very “ratchet-like,” for they lack any feature corresponding to
the pawl, which is an essential feature of any real ratchet system. Such models
refer more naturally to games of chance (coin-flipping games), and it is in game-
theoretic terms that results in this field are most commonly formulated.3

Here we study nearest-neighbor walks on Z (stand-in-place forbidden)
that are generated by Markov matrices A and B and their relationships to the
walk generated by their compose C = AB. The structure of B (of which A is
a degenerate special case) will be designed to preserve the period-3 character
of walks on the cyclic graph of order 3. The analysis is made relatively more
complicated by the circumstance that stochastic state vectors and the Markov
matrices that act upon them are now infinite-dimensional. To deal with that
problem I adopt a clever line of argument devised by Ray Mayer.4 We will
witness the emergence of “Parrondo’s phenomenon” after only a few steps,
but—surprisingly, and contrary to the impression conveyed by the literature—
will find that it evaporates asymptotically.

Simple theory of A-walks. A walker advances to the right with site-independent
probability a, retreats to the left with probability A = 1−a. During the course
of an n-step walk the walker—assumed to have departed from the origin—takes
k steps to the right and n−k steps to the left, arriving finally (after n decisions
selected from a total of 2n options) at site

# = k − (n − k) = 2k − n : k = 0, 1, 2, . . . , n

which, we note, is even or odd according as n is even or odd.5 The probability
that he arrives at that site is

pn,k =
(n

k

)
ak(1 − a)n−k :

n∑

k=0

pn,k = 1

3 See G. Harmer, D. Abbott, P. Taylor & J. Parrondo, “Brownian ratchets
and Parrondo’s games,” Chaos 11, 705 (2001); E. Key, M. Klosek & D. Abbott,
“On Parrondo’s paradox: how to construct unfair games by composing fair
games,” arXiv:math/020615v1 (15 Jun 2002) and papers cited there.

4 Personal communication (10-page note taped to my office door on
6 November 2014, responsive to a question posed on 10 October).

5 Nearest-neighbor walks on Z “blink” in the sense suggested by the following
figure

· · · • • • • • • • • • • • • • • • • • • • • • • • · · ·
and discussed on pages 8-9 of Parrondo’s Ratchet I .
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and the expected mean of the set of endpoints generated by many such walks
(expected gain if he were winning/losing pennies by flip of a loaded coin) is

Sn(a) =
n∑

k=0

(2k − n)pn,k = n(2a − 1) (1)

—quite as anticipated: the expected gain per flip is a − A = 2a − 1 so by a
simple scaling principle we expect the gain after n flips to be n(2a − 1). The
gambler can expect to break even (the walker to end up where he began, though
this is strictly possible only if n is even) if a = 1

2 . The expected rate of gain of
the gambler (“velocity” of the mean position of an ensemble of walkers, analog
of the asymptotic “probability current” for walkers on a cyclic graph) is

J(a) ≡ d
dnSn(a) = 2a − 1 = S1(a)

These elementary results will serve as benchmarks that we will use to check the
accuracy of results obtained in more complex situations.

Theory of B-walks: Part 1. Analysis in this case is made relatively complicated
by the circumstance that the next-step probabilities are now site-dependent.
Parrondo’s assumption that they proceed x, y, y, x, y, y, x, y, y, . . . tends to
disrupt the symmetry of the argument; I therefore will assume that they proceed
x, y, z, x, y, z, x, y, z, . . . and recover Parrondo’s assumption as a special case,
after the fact. The 3rd-order periodicity of that progression will become a
dominant feature of the discussion.

Let B—sometimes denoted Bx,y,z—be the ∞-dimensional matrix of which
the central portion is shown below:

B =





0 y · · · · · · · · ·
Z 0 x · · · · · · · ·
· Y 0 z · · · · · · ·
· · X 0 y · · · · · ·
· · · Z 0 x · · · · ·
· · · · Y 0 z · · · ·
· · · · · X 0 y · · ·
· · · · · · Z 0 x · ·
· · · · · · · Y 0 z ·
· · · · · · · · X 0 y
· · · · · · · · · Z 0





Here 0 marks the center of the matrix, the dots · are to be read as zeros, and
X ≡ 1 − x, Y ≡ 1 − y, Z ≡ 1 − z. The columns of B sum to unity and
its elements fall within the unit interval [0, 1], so B is Markovian. Assume that
the walker stands initially at the origin; i.e., that his initial state is described by
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the stochastic vector

ppp0 =





·
0
0
0
0
1
0
0
0
0
·





After n steps his stochastic state has become

pppn = Bnppp0

His expected position (mean of the positions achieved by many n -step walks)
is

Sn(x, y, z) = (www,pppn) = (www, Bnppp0) where www =





·
4
3
2
1
0

−1
−2
−3
−4
·





(2)

To ascend thus (by what I call the naive method) to order n one must (to avoid
boundary errors) work with B-matrices of dimension ν ! 2n + 1. It is by this
means (working with ν = 15) that I obtained the results reported below:

S4(x, y, z) = −4+4x+2y−2xy+2x2y+2xy2−2x2y2+2z−2x2z+4xyz−2xy2z

+2z2−4xz2+2x2z2−2yz2+2xyz2

S5(x, y, z) = −5+4x+2x3+2y+2xy−4x3y+2y2−4xy2+2x3y2+4z−4xz+4x2z

−4x3z+2xyz−2x2yz+4x3yz−4y2z+8xy2z−2x2y2z+2xz2−4x2z2

+2x3z2−2yz2+4xyz2−2x2yz2+2y2z2−4xy2z2

S6(x, y, z) = −6+4x+4x2−2x3+4y−8x2y+6x3y−2xy2+8x2y2−6x3y2+2xy3−4x2y3

+2x3y3+4z−6x2z+2x3z−4yz+8xyz+8x2yz−4x3yz+2y2z+2xy2z

−10x2y2z+2x3y2z−4xy3z+4x2y3z+2xz2−4x2z2+2x3z2+4yz2

−10xyz2+8x2yz2−2x3yz2−4y2z2+2xy2z2+2xy3z2+2z3−6xz3

+6x2z3−2x3z3−4yz3+8xyz3−4x2yz3+2y2z3−2xy2z3
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S7(x, y, z) = −7+6x+2x2+4y−4xy+6x2y−6x4y+8xy2−14x2y2+6x4y2+2y3−8xy3

+8x2y3−2x4y3+4z−6x2z+8x3z−6x4z+8xyz+2x2yz−16x3yz

+12x4yz+2y2z−20xy2z+20x2y2z+8x3y2z−6x4y2z−6y3z+20xy3z

−14x2y3z+4z2−12xz2+18x2z2−16x3z2+6x4z2−6yz2+12xyz2

−16x2yz2+16x3yz2−6x4yz2−4y2z2+20xy2z2−18x2y2z2+6y3z2

−16xy3z2+6x2y3z2−2z3+8xz3−12x2z3+8x3z3−2x4z3+2yz3

−4xyz3+2x2yz3+2y2z3−8xy2z3+6x2y2z3−2y3z3+4xy3z3

But raising ever larger matrices to ever higher powers becomes rapidly
unfeasible, and it is clearly not possible by such naive means to construct
estimates of the form assumed by Sn(x, y, z) as n becomes asymptotically large.

Plot,6 for ascending values of n, the “null surfaces” that result from setting
Sn(x, y, z) = 0. It becomes apparent (see plates 1 & 3) that those surfaces
rapidly converge to a limit. . .which raises two interrelated questions:

• How does one construct a description of the asymptotic break-even
condition described by that limiting null surface?
• How, by inspection of multinomials such as those shown above, does
one recognize that (at last within the unit cube) they tend toward
“saying the same thing”? This I call the “polynomial similarity
problem.”

The alternative method devised by Ray Mayer4—developed below—provides a
sharp answer to the first question, and some insight into the answer to the
second.

Theory of B-walks: Part 2. The naive method was seen at (2) to proceed from

Sn(x, y, z) = (www, Bnppp0)

Mayer’s method proceeds from the obviously equivalent equation

Sn(x, y, z) = (ppp0, Dnwww) where D ≡ B T (3)

Introduce vectors

FFF 1 =





·
0
1
0
0
1
0
0
1
0
·





, FFF 2 =





·
1
0
0
1
0
0
1
0
0
·





, FFF 3 =





·
0
0
1
0
0
1
0
0
1
·





, FFF 0 =
3∑

k=1

FFF k =





·
1
1
1
1
1
1
1
1
1
·





6 Use the Mathematica v7 command

ContourPlot3D[Sn[x, y, z] =|| 0, {x, 0, 1}, {y, 0, 1}, {z, 0, 1}]



6 Parrondo’s Ratchet II

whose periodicity mimics that of B. Matrix multiplications supply

DFFF 1 = Y FFF 2 + zFFF 3

DFFF 2 = xFFF 1 + ZFFF 3

DFFF 3 = XFFF 1 + yFFF 2

= g1(x)FFF 1 + g2(y)FFF 2 + g3(z)FFF 3

= g3(x)FFF 1 + g1(y)FFF 2 + g2(z)FFF 3

= g2(x)FFF 1 + g3(y)FFF 2 + g1(z)FFF 3





(4)

where we note that the functions

g1(u) = 0 : abbreviated g1,u

g2(u) = U ≡ 1 − u : abbreviated g2,u

g3(u) = u : abbreviated g3,u

sum to unity, and that D(FFF 1 +FFF 2 +FFF 3) = FFF 0. Also (by matrix multiplication)

D www =





·
5y + 3Y
4x + 2X
3z + 1Z
2y + 0Y
1x − 1X
0z − 2Z

−1y − 3Y
−2x − 4X
−3z − 5Z

·





which we find with a little inspired tinkering can be written

D www = www +GGG1 (5)
GGG1 = (2x − 1)FFF 1 + (2y − 1)FFF 2 + (2z − 1)FFF 3

= f(x)FFF 1 + f(y)FFF 2 + f(z)FFF 3

≡ α1FFF 1 + β1FFF 2 + γ1FFF 3 (6)

with f(u) = 2u − 1 = u − (1 − u) = u − U .7 Iteration of (5) gives

7 We note in passing that—from the definitions of www and the FFF -vectors
and the placement of the solitary non-zero element of the stochastic vector ppp0

(which reflects our easily altered working assumption that the walker departs
from the origin)—it follows from (5) that

S1(x, y, z) = (ppp0, D www) = α1 = 2x − 1 = S1(x)

where S1(x) was defined at (1): the first step of a B-walker is equivalent to the
first step of an A-walker with a = x.
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D www = www + GGG1 = www + HHH1

D2www = www + GGG1 + GGG2 = www + HHH2

D3www = www + GGG1 + GGG2 + GGG3 = www + HHH3

...
Dnwww = www + GGG1 + GGG2 + · · · + GGGn = www + HHHn






(7)

where
GGGn = D GGGn−1 = Dn−1GGG1

Bringing (4) to (6), we have

GGG2 = α2FFF 1 + β2FFF 2 + γ2FFF 3 = D GGG1 = α1 · {g1,xFFF 1 + g2,yFFF 2 + g3,zFFF 3}
+ β1 · {g3,xFFF 1 + g1,yFFF 2 + g2,zFFF 3}
+ γ1 · {g2,xFFF 1 + g3,yFFF 2 + g1,zFFF 3}

giving 


α2

β2

γ2



 = G




α1

β1

γ1



 with G =




g1,x g3,x g2,x

g2,y g1,y g3,y

g3,z g2,z g1,z



 (8)

which is of the form ggg2 = Gggg1 and implies

gggn = Gn−1ggg1 : n = 1, 2, 3, . . . (9)

Here gggn is a 3-vector (it inherits its dimension from the periodicity of B),
assembled from the coordinates (with respect to the FFF -basis) of the ∞ -vector
GGGn. Its introduction permits us to pull back from ∞ -dimensional theory to a
much more tractable 3-dimensional formalism.

Since ggg -space is 3-dimensional, it must be possible to display every gggn as
a linear combination of any linearly independent triplet, of which {ggg1, ggg2, ggg3} is
the most natural candidate. Writing

ggg1 = 1ggg1 + 0ggg2 + 0ggg3

ggg2 = 0ggg1 + 1ggg2 + 0ggg3

ggg3 = 0ggg1 + 0ggg2 + 1ggg3

the question arises: What are the coordinates that enter into statements of the
form gggn = anggg2 + bnggg2 + cnggg3 (n = 4, 5, 6, . . .)? To answer the question I
appeal to some fairly elegant trickery that might be considered extravagant in
the present relatively simple context, but that will prove indispensable when we
turn to the more complicated composite walks to which Parrondo has directed
our attention.

More than fifty years ago I devised a way to display the coefficients in the
characteristic polynomial of any square matrix M as algebraic functions of the
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traces of powers of M.8 In the 3-dimensional case we have

det(M − λ I) =
3∑

n=0

1
n!Qn(−λ)3−n = 1

6Q3 − 1
2Q2λ + Q1λ

2 − Q0λ
3

where
Q0 = 1
Q1 = T1

Q2 = T 2
1 − T2

Q3 = T 3
1 − 3T1T2 + 2T3 = 6 det M

and Tk = tr Mk. It follows by the Cayley-Hamilton theorem that

M3 = 1
6Q3 I − 1

2Q2 M + Q1 M2

= 1
6

(
T 3

1 − 3T1T2 + 2T3

)
I − 1

2

(
T 2

1 − T2

)
M + T1 M2

≡ q1 I + q2 M + q3 M2 (10)

In the problem at hand the generic M -matrix has become

G =




0 x 1 − x

1 − y 0 y
z 1 − z 0



 (11)

amd Mathematica supplies

q1 = 1 − (x + y + z) + (xy + yz + zx) = det G ≡ σ

q2 = (x + y + z) − (xy + yz + zx) = 1 − det G = 1 − σ

q3 = 0





(12)

giving

ggg4 = G3ggg1 =
[
q1G0 + q2G1 + q3G2

]
ggg1 = q1ggg1 + q2ggg2 + q3ggg3

∴ ggg5 = q3q1ggg1 + (q1 + q3q2)ggg2 + (q3 + q3q3)ggg3

...

where the ggg -vectors refer to the FFF -basis. The chain

ggg1 −−−→
G

ggg2 −−−→
G

ggg3 −−−→
G

ggg4 −−−→
G

ggg5 −−−→
G

· · ·

is not particularly easy to develop. But when referred to the G-basis it becomes

8 For a recent account of the old material to which I allude, see “Algorithm
for the efficient evaluation of the trace of the inverse of a matrix” (1996), which
was written to resolve a problem posed by Richard Crandall.
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1
0
0



 −−−→
Q




0
1
0



 −−−→
Q




0
0
1



 −−−→
Q




q1

q2

q3



 −−−→
Q




q3q1

q1 + q3q2

q2 + q3q3



 −−−→
Q

· · ·

which is generated by

Q =




0 0 q1

1 0 q2

0 1 q3



 (13)

and is much easier to develop, not because Q is so much simpler than G
(though for Parrondo’s composite walks that relative simplicity will become
conspicuous) but because Q is Markovian.9

Let us agree to write

HHHn ≡ GGG1 + GGG2 + · · · + GGGn = anGGG1 + bnGGG2 + cnGGG3 (14)

hhhn ≡




an

bn

cn





which is to say: let {an, bn, cn} be the coordinates of HHHn relative to the GGG-basis.
We have

hhh1 =




1
0
0



 , hhh2 =




1
1
0



 , hhh3 =




1
1
1



 , hhh4 =




1 + q1

1 + q2

1 + q3



 , . . .

which are seen to be produced by the inhomogeneous iteration rule

hhh2 = Qhhh1 + hhh1 = (Q + I)hhh1

hhh3 = Qhhh2 + hhh1 = (QQ + Q + I)hhh1

hhh4 = Qhhh3 + hhh1 = (QQQ + QQ + Q + I)hhh1

...

hhhn = Qhhhn−1 + hhh1 =
n−1∑

k=0

Qkhhh1 (15)

Drawing now upon (3), (7) and (14), we have

Sn(x, y, z) = (ppp0,www) + (ppp0, anGGG1 + bnGGG2 + cnGGG3)

For reasons already explained,7 the leading term on the right vanishes and the

9 That the q -parameters sum to unity has already been remarked. That they
range on the unit interval as the {x, y, z}-parameters range on that interval is
more easily demonstrated graphically than analytically. G is not Markovian,
though its transpose is.
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remaining terms sense only the central elements of the GGG -vectors, so we have

Sn(x, y, z) = anG1 + bnG2 + cnG3 (16)

where the central elements in question are

G1 = (2x − 1)
G2 = (2z − 1) + 2x(y − z)

G3 = (2y − 1) − 2(yz − zx + xy) + 2x2(1 − y − z) + 4xyz





(17)

which have been read off from the computed values of GGG1 = D www−www, GGG2 = D GGG1

and GGG3 = D GGG2.

The formula (16) can be used as it stands to obtain explicit results of
fairly high order—results that are found to agree precisely with the naively-
constructed results reported on pages 4 & 5. To that end one might appeal to
Mathematica for assistance in evaluating the {an, bn, cn} coordinates that follow
from (15). But there is a better way to approach the latter problem—one which
will enable us to discuss the asymptotic properties of B-walks.

Theory of B-walks: Part 3. We undertake now to construct the generalized
spectral resolution10 of Q, which will permit us to reformulate—in a very useful
way—the expression on the right side of (15).

The roots of the cubic polynomial

det(Q − λI) = q1 + q2λ + q3λ
2 − λ3

are famously complicated, but if we set q2 = 1 − q1 − q3 to render explicit the
fact that

Q =




0 0 q1

1 0 1 − q1 − q3

0 1 q3



 (18)

is Markovian we obtain

det(Q − λI) = (λ − 1) ·
[
λ2 + (1 − q3)λ + q1

]

so have only to solve a quadratic to obtain the complete spectrum.11 We will
have need ultimately of the theory that flows from (18), but for expository
convenience I look initally to the theory that results when one brings into play
the simplifications (12) that associate with B -walks, writing

Q =




0 0 σ
1 0 1 − σ
0 1 0



 (19)

10 See pages 6 & 7 of Parrondo’s Ratchet I and material cited there.
11 We lose this happy fact if the walk has period greater than three.
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From
det(Q − λI) = (λ − 1)(λ2 + λ + σ)

we obtain eigenvalues

λ1 = 1

λ2 = − 1
2 (1 + ξ) with ξ =

√
1 − 4σ

λ3 = − 1
2 (1 − ξ)





(20)

where λ2 and λ3 are real if 0 # σ < 1
4 and complex conjugates if 1

4 < σ # 1.
With the assistance of Mathematica we construct column vectors {uuu1, uuu2, uuu3}
that are right eigenvectors of Q

Q uuuk = λkuuuk

and row vectors {vvv1, vvv2, vvv3} that are left eigenvectors of Q (transposed right
eigenvectors of Q T)

vvvkQ = λkvvvk

We use those to construct matrices

Pk = uuuk vvvk

vvvk uuuk
= 3 × 3 matrix

number
: k = 1, 2, 3

which are demonstrably projective

P2
k = Pk : k = 1, 2, 3

orthogonal
PjPk = O : j '= k

and complete

P1 + P2 + P3 = I
and permit one to write

Q = λ1P1 + λ2P2 + λ3P3

whence
Qn = λn

1 P1 + λn
2 P2 + λn

3 P3 (21)

Mathematica supplies explicit descriptions of the P-matrices that can be written

P1 = D1
–1




σ σ σ
1 1 1
1 1 1





P2 = D2
–1




ξ − 1 + 2σ −(ξ − 1)σ −2σ2

−2σ (ξ + 1)σ − 1
2 (ξ + 1)2σ

−(ξ − 1) −2σ (ξ + 1)σ





P3 = D3
–1




ξ + 1 − 2σ −(ξ + 1)σ 2σ2

2σ (ξ − 1)σ 1
2 (ξ − 1)2σ

−(ξ + 1) 2σ (ξ − 1)σ
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where
D1 ≡ 2 + σ

D2 ≡ ξ(1 + 2σ) + (4σ − 1)
D3 ≡ ξ(1 + 2σ) − (4σ − 1)

Returning with (21) to (15) we have

hhhn =
{ n−1∑

k=0

λk
1 P1 +

n−1∑

k=0

λk
2 P2 +

n−1∑

k=0

λk
3 P3

}
hhh1 (22)

Typical low-order results

hhh3 =




1
1
1





hhh5 =




1 + σ

2
2 − σ





hhh7 =




1 + 2σ
3 − σ2

3 − 2σ + σ2





hhh4 =




1 + σ
2 − σ

1





hhh6 =




1 + 2σ − σ2

3 − 2σ + σ2

2





hhh8 =




1 + 3σ − 2σ2 + σ3

4 − 3σ + 3σ2 − σ3

3 − σ2





suggest that quite generally
∑

elements of hhhn = n

Remarkably, all reference to the D-denominators that enter into the construction
of the P-matrices, as also to the ξ that appears in the definitions both of those
and of the eigenvalues, has evaporated.

Reading now from (16), we have

S4(x, y, z) = a4G1 + b4G2 + c4G3

= (1 + σ)G1 + (2 − σ)G2 + G3

S5(x, y, z) = (1 + σ)G1 + 2G2 + (2 − σ)G3

S6(x, y, z) = (1 + 2σ − σ2)G1 + (3 − 2σ + σ2)G2 + 2G3

S7(x, y, z) = (1 + 2σ)G1 + (3 − σ2)G2 + (3 − 2σ + σ2)G3

Those results—reading σ from (12) and {G1, G2, G3} from (17)—are found
(with Mathematica’s assistance) to duplicate precisely the naive results reported
on pages 4 & 5. The preceding formulæ provide some insight into how those
results acquired their forbidding complexity.



B-walk asymptotics 13

Graphic display (plate 1) indicates that the null surfaces defined
Sn(x, y, z) = 0 fall into two qualitatively distinct classes, according as n (small)
is odd or even, and that the distinction between those classes diminishes as n
becomes larger. Also vividly evident in such figures is the fact that the condition
x = 1

2 serves to inscribe a straight line on those surfaces, as follows from (for
example)

S4( 1
2 , y, z) = 1

2 (y + z − 1)(4+y+z−2yz)
S5( 1

2 , y, z) = 1
4 (y + z − 1)(11+y+z−2yz)

S6( 1
2 , y, z) = 1

4 (y + z − 1)(13+2y+y2+2z−2yz−4y2z+z2−4yz2+4y2z2)
S7( 1

2 , y, z) = 1
8 (y + z − 1)(31+6y−y2+6z−14yz+4y2z−z2+4yz2−4y2z2)

Why the preferential role assigned here to x? Because Sn(x, y, z) refers to the
expected mean n -step progress of walkers who depart from the origin or any
site indexed 0mod3, at each of which the next-step probability is set by x.
Results appropriate to walkers who depart from any site indexed 1mod3 are
obtained by cyclic permutation {x, y, z} → {y, z, x}, while {x, y, z} → {z, x, y}
gives results appropriate to walkers who depart from any site indexed 2mod3.

Asymptotic implications of the preceding argument. From λ1 = 1 it follows that
(22) can for all n be written

hhhn =
{

nP1 +
n−1∑

k=0

λk
2 P2 +

n−1∑

k=0

λk
3 P3

}
hhh1

And since |λ2,3| < 1 we can for large n write

hhhn ∼
{

nP1 + 1
1 − λ2

P2 + 1
1 − λ3

P3

}
hhh1

=
{

nP1 + 2
3 + ξ

P2 + 2
3 − ξ

P3

}
hhh1

= n · 1
2 + σ




σ
1
1



 + 1
(2 + σ)2




4 − σ
σ − 1
−3





≈ n · 1
2 + σ




σ
1
1



 (23)

which gives

Sn(x, y, z) ≈ n · S(x, y, z)

S(x, y, z) = (σG1 + G2 + G3)
2 + σ

= 6xyz − 3σ
2 + σ

= 6xyz − 3 + 3(x + y + z) − 3(xy + yz + zx)
3 − (x + y + z) + (xy + yz + zx)

(24)

≡ P(x, y, z)
Q(x, y, z)
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This result is—in view of the heavy calculation that went into its derivation—
remarkably simple. Note the symmetry of S(x, y, z); i.e., its invariance under all
permutations of its arguments. It is evident graphically (plate 2)—and follows
analytically from

S( 1
2 , y, z) = (y + z − 1) · f(y, z)

S(x, 1
2 , z) = (z + x − 1) · f(z, x)

S(x, y, 1
2 ) = (x + y − 1) · f(x, y)

f(x, y) = − 3
5 − x − y + 2xy

—that on the null surface S(x, y, z) = 0 are inscribed (not one but) three
straight lines,which partition the surface into two sets of three congruent sectors.
Those lines intersect at the center of the unit cube: S( 1

2 , 1
2 , 1

2 ) = 0. We infer
that the asymptotic mean is the same whatever the walker’s point of departure.
At x = y = z = a we from (24) obtain

Sn(a, a, a) ≈ n · (2a − 1) = Sn(a)

which we know (compare (1)) to be in fact exact.

Theory of composite C-walks. We turn now to the composite 4-parameter
walks generated by Ca,x,y,z = AaBx,y,z, though we will in the end have interest
only in the 3-parameter walks generated by Ca,x,y,y. A central portion of the
C -matrix looks like this:

C =





Ax+aX 0 ay · · · ·
0 Az+aZ 0 ax · · ·

AX 0 Ay+aY 0 az · ·
· AZ 0 Ax+aX 0 ay ·
· · AY 0 Az+aZ 0 ax

· · · AX 0 Ay+aY 0

· · · · AZ 0 Ax+aX





That C is Markovian follows from au+(1− a)u+ a(1−u)+ (1− a)(1−u) = 1,
and its 3-periodicity is obvious. C refers to 2-step events, and in two steps a
walker can return to his starting point (in two different ways), which is why
non-zero terms now appear on the diagonal. But such a walker cannot arrive
at a nearest-neighbor point, which accounts for the empty off-diagonals.

The “naive method” remains a computational option, but to ascend to
order n one must now use matrices of dimension not less than ν = 4n + 1. It is
by such computation (with ν = 29) that—following the pattern and preserving
the notation of the argument that began on page 6 (but assigning new meanings
now to the symbols)—we are led to write

DFFF 1 = g1(a, x)FFF 1 + g2(a, y)FFF 2 + g3(a, z)FFF 3

DFFF 2 = g3(a, x)FFF 1 + g1(a, y)FFF 2 + g2(a, z)FFF 3

DFFF 3 = g2(a, x)FFF 1 + g3(a, y)FFF 2 + g1(a, z)FFF 3
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where now
g1(a, u) = Au + aU

g2(a, u) = au

g3(a, u) = AU

= a + u − 2au

= au

= 1 − a − u + au

again sum to unity. Moreover

Dwww = www + GGG1

GGG1 = f(a, x)FFF 1 + f(a, y)FFF 2 + f(a, z)FFF 3

= α1FFF 1 + β1FFF 2 + γ1FFF 3

where f(a, u) = 2a + 2u − 2 = (a − A) + (u − U).12 Again we have equations
(7) and (8), the difference being that G is given now by (compare (11))

G =




a + x − 2ax 1 − a − x + ax ax

ay a + y − 2ay 1 − a − y + ay
1 − a − z + az az a + z − 2az





which by (10) entails (compare (12))

q1 = (1 − 3a + 3a2)
[
1 − (x + y + z) + (xy + yz + zx)

]
= det G

q2 = −3a2 + (3a2 − a)(x + y + z) − (1 − 3a + 3a2)(xy + yz + zx)
q3 = 3a + (1 − 2a)(x + y + z)

Again we have

Q =




0 0 q1

1 0 q2

0 1 q3



 (13)

which we intend to use as before in (15) to obtain

Sn(a, x, y, z) = anG1 + bnG2 + cnG3

And to evaluate the powers of Q that appear in (15) we will again make use of
the spectral decomposition

Q = λ1P1 + λ2P2 + λ3P3

12 We note in passing that

S1(a, x, y, z) = (ppp0, Dwww) = α1 = 2(a + x − 1)

which in the case x = a supplies the very sensible 2-step result

S1(a, a, y, z) = 2(2a − 1) = 2S1(a) = S2(a)
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Execution of this program is made relatively difficult by the circumstance
that the expressions that describe the eigenvalues {λ2, λ3}, the P-matrices and
the central GGG-elements {G1, G2, G3} are now significantly more complicated.

We begin by writing

Q =




0 0 σ
1 0 1 − σ − τ
0 1 τ





to render explicit the fact that Q is Markovian. We have favored q1 = det Q
because it is algebraically fundamental, and q3 because it is the simplest of the
q -functions. At τ = 0 we recover (19). The eigenvalues have become

λ1 = 1

λ2 = − 1
2 (1 − τ + ζ) with ζ =

√
1 − 4σ − 2τ + τ2

λ3 = − 1
2 (1 − τ − ζ)

Proceeding as before we obtain

P1 = D1
–1




σ σ σ

1 − τ 1 − τ 1 − τ
1 1 1





P2 = D2
–1




− 1

2 (ζ−1+τ)2 −(ζ−1+τ)σ −2σ2

−2σ+τ(ζ−1+τ) (ζ+1+τ)σ −(ζ+1−2σ−τ)σ

−(ζ−1+τ) −2σ (ζ+1−τ)σ





P3 = D3
–1




+ 1

2 (ζ+1−τ)2 −(ζ+1−τ)σ 2σ2

+2σ+τ(ζ+1−τ) (ζ−1−τ)σ −(ζ−1+2σ+τ)σ

−(ζ+1−τ) 2σ (ζ−1+τ)σ





where
D1 = 2 + σ − τ

D2 = ζ (1 + 2σ − τ) + (4σ − 1 + 2τ − τ2)

D3 = ζ (1 + 2σ − τ) − (4σ − 1 + 2τ − τ2)
Mathematica confirms that the P-matrices described above do indeed possess
all the properties one expects of a complete set of orthogonal projectors, and
that they do indeed collaborate with eigenvalues {λ1, λ2, λ3} to provide the
spectral resolution of Q. Proceeding as before, we bring this information to

hhhn =
n−1∑

k=0

Qkhhh1 =
{

nP1 +
n−1∑

k=0

λk
2 P2 +

n−1∑

k=0

λk
3 P3

}
hhh1

and (after the replacement ζ →
√

1 − 4σ − 2τ + τ2) obtain

hhh3 =




1
1
1





hhh5 =




1 + σ + στ
2 − στ − τ2

2 − σ + τ2





hhh4 =




1 + σ

2 − σ − τ
1 + τ





hhh6 =




1 + 2σ − σ2 + στ2

3 − 2σ + σ2 + (σ − 1)(2τ − τ2)
2 − 2(σ − 1)τ − τ2
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These results—from which the D-denominators have once again magically
evaporated (as have all references to ζ), and which again suggest that quite
generally

∑
elements of hhhn = n—give back the results reported on page 12 in

the limit τ → 0. They supply (for example)

S4(a, x, y, z) = (1 + σ)G1 + (2 − σ − τ)G2 + (1 + τ)G3

S5(a, x, y, z) = (1 + σ + στ)G1 + (2 − στ − τ2)G2 + (2 − σ + τ2)G3

where

σ ≡ q1 = 1−3a+3a2−x+3ax−3a2x−y+3ay−3a2y+xy−3axy+3a2xy−z+3az−3a2z

+xz−3axz+3a2xz+yz−3ayz+3a2yz

τ ≡ q3 = 3a+x+y+z−2ax−2ay−2az

G1 ≡ central element of GGG1 = D www −www

= −2+2a+2x

G2 = central element of GGG2 = D GGG1

= −2+2a+2ax+2x2−4ax2+2y−2ay−2xy+2axy+2axz

G3 = central element of GGG3 = D GGG2

= −2+2a+2a2x+6ax2−10a2x2+2x3−8ax3+8a2x3+4ay−4a2y+2xy−8axy+6a2xy−2x2y

+4ax2y−2a2x2y+2y2−6ay2+4a2y2−2xy2+6axy2−4a2xy2+2z−4az+2a2z−2xz

+4axz+2a2xz−2a2x2z−2yz+4ayz−2a2yz+2xyz−4axyz+4a2xyz+2axz2−4a2xz2

The expressions that result when that information is assembled are so
complicated that they are best allowed to remain withinMathematica’s memory;
we find, for example, that

S3(a, x, y, z) = −6+6a+2x+2ax+2a2x+2x2+2ax2−10a2x2+2x3−8ax3+8a2x3

+2y+2ay−4a2y−6axy+6a2xy−2x2y+4ax2y−2a2x2y+2y2−6ay2

+4a2y2−2xy2+6axy2−4a2xy2+2z−4az+2a2z−2xz+6axz+2a2xz

−2a2x2z−2yz+4ayz−2a2yz+2xyz−4axyz+4a2xyz+2axz2−4a2xz2

S4(a, x, y, z) = −8+sum of 97 terms, of which the last is 8a3xz3

The results of such calculations, carried to order 7, were found to be in precise
agreement with the results of naive calculations done with 29-dimensional
C -matrices. It was found, moreover, that (for n = 1, 2, . . . , 7)

Sn(0, 0, 0, 0) = −2n

Sn(1, 1, 1, 1) = +2n

—quite as one expects: if every step in a series of n double steps is to the left
with certainty, then the walker with certainly terminate at # = −2n, and if
to the right with certainty then he will with certainly terminate at # = +2n .



18 Parrondo’s Ratchet II

Similarly, if every step is left/right with equal probability then he is most likely
to end up where he began, and indeed: the preceding results yield

Sn( 1
2 , 1

2 , 1
2 , 1

2 ) = 0

On the evidence of those results we infer, moreover, that

Sn(a, x, y, z) is a multinomial of order 2n − 1

from which it would follow that the number of terms that enter into the
construction of Sn(a, x, y, z) cannot exceed

#5,2n−1 = number of terms in (1 + a + x + y + z)2n−1

where a combinatoric theorem familiar from the statistical mechanics of bosonic
systems (proof immediate by the “stars and bars” argument) supplies

#m,n = number of terms in (x1 + x2 + · · · + xm)n

=
(

n + m − 1
m − 1

)
=

(
n + m − 1

n

)

From #5,5 = 126, #5,7 = 330 we see that fewer than one third of the anticipated
terms actually enter into the construction of S3(a, x, y, z) and S4(a, x, y, z).

The results just developed are fruit of “Mayer’s method,” which, as
previously remarked, permits one to circumvent altogether the difficulties that
attend raising high-dimensional matrices to high powers and provides insight
into how the resulting expressions acquire their complexly opaque structure.
More to the point, Mayer’s method permits one to address the asymptotics of
the problem, concerning which the naive method provides not a clue.

Asymptotics of C-walks. The argument that gave (24) now gives

Sn(a, x, y, z) ≈ n ·S(a, x, y, z)

S(a, x, y, z) = σG1 + (1 − τ)G2 + G3

2 + σ − τ
= P(a, x, y, z)

Q(a, x, y, z)
(25)

where
P = multinomial of order 5, sum of 31 terms
Q = multinomial of order 4, sum of 21 terms

when spelled out in detail13 read

P = 6(−1 + 3a − 3a2 + a3)
[
1 − (x + y + z) + (xy + yz + zx) − xyz

]

+ 6a3xyz

Q = (3 − 6a + 3a2) − (2 − 5a + 3a2)(x + y + z)

+ (1 − 3a + 3a2)(xy + yz + zx)

13 Here I have made manifest the permutational xyz-symmetry of these
asymptotic multinomials.
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Confidence in the accuracy of these results is inspired by the observation that
they give

Sn(a, a, a, a) ≈ n−6 + 36a − 90a2 + 120a3 − 90a4 + 36a5

3 − 12a + 21a2 − 18a3 + 9a4

= 2n(2a − 1)
= 2Sn(a)

So here again (compare the point remarked at the end of the preceding section),
the asymptotic formula is in such cases (which refer to the expected progress
of a walker who takes n double steps, and advances with the same probability
at each step) exact. Accuracy is supported also by the observations that

S(0 , 0 , 0 , 0) = −2
S( 1

2 , 1
2 , 1

2 , 1
2 ) = 0

S(1 , 1 , 1 , 1) = +2

which conform to the low-order exact results reported on the preceding page.

Parrondo’s phenomenon...and its asymptotic extinction. Equations of the form
Sn(a, x, y, z) = 0—and asymptotically S(a, x, y, z) = 0—inscribe null surfaces
within the unit 4-cube, and are not susceptible to graphic display except section
by section. Which is perhaps the reason that Parrondo elected to set y = z,
as we also will do. Walkers in such cases are subject to exceptional next-step
probabilities only when they stand on lattice sites numbered 0mod3.

Following Parrondo’s lead, we undertake now to compare the walks
generated by A = Ba,a,a, B = Bx,y,y and C = Ca,x,y,y = AB. Setting y = z
simplifies—but masks the informative symmetry of—the results achieved in
preceding paragraphs. We find, for example, that (compare pages 8 & 15)

S4(x, y, y) = −4+4x+4y−2xy+2y2+2xy2−2y3

S5(x, y, y) = −5+4x+2x3+6y−2xy+4x2y−8x3y+2y2−6x2y2+8x3y2

−6y3+12xy3−4x2y3+2y4−4xy4

S6(x, y, y) = −6+4x+4x2−2x3+8y−14x2y+8x3y−4y2+8xy2+12x2y2

−8x3y2+8y3−12xy3−8y4+6xy4+2y5

S7(x, y, y) = −7+6x+2x4+8y−4xy+8x3y−12x4y+4y2+4xy2+6x2y2

−32x3y2+24x4y2−4y3−8xy3+32x3y3−16x4y3−8y4

+36xy4−30x2y4+8y5−24xy5+12x2y5−2y6+4xy6

S(x, y, y) =
−3+3(x+2y)−3(2xy+y2)+6xy2

3−(x+2y)+(2xy+y2)

Graphic display indicates once again that the null curves defined Sn(x, y, y) = 0
fall into two distinct classes according as n (small) is odd or even, and that
members of both classes approach the curve S(x, y, y) = 0 as n becomes large:
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see plate 3. Similarly (compare page 17—here I have proceeded by the naive
method with 33-dimensional matrices—and page 18)

S2(a, x, y, y) = −4+4a+2x+2ax+2x2−4ax2+2y−2ay−2xy+4axy

S3(a, x, y, y) = −6+6a+2x+2ax+2a2x+2x2+2ax2−10a2x2+2x3−8ax3

+8a2x3+4y−2ay−2a2y−2xy+8a2xy−2x2y+4ax2y

−4a2x2y−2ay2+2a2y2+4axy2−4a2xy2

S4(a, x, y, y) = −8 +plus sum of 48 terms, of which the last is +4a3xy3

S5(a, x, y, y) = −10+plus sum of 94 terms, of which the last is −4a4xy4

S6(a, x, y, y) = −12+plus sum of 152 terms, of which the last is +4a5xy5

S7(a, x, y, y) = −14+plus sum of 235 terms, of which the last is −4a6xy6

S8(a, x, y, y) = −16+plus sum of 344 terms, of which the last is +4a7xy7

S(a, x, y, y) =
6(−1+3a−3a2+a3)[1−(x+2y)+(2xy+y2)−xy2]+6a3xy2

(3−6a+3a2)−(2−5a+3a2)(x+2y)+(1−3a+3a2)(2xy+y2)

We turn now to the geometric implications of those analytic results.
Familiarly, two linear transcepts of a square partition the square into four
sectors (three if the lines intersect at the boundary). Similarly, three planar
transcepts of a cube partition the cube into eight sectors (“octants” in the
most familiar case). The null surfaces defined

S4(a) = 0
S4(x, y, y) = 0

S4(a, x, y, y) = 0

unit cube in {a, x, y}-parameter space, and are seen in plate 4 to partition the
cube into eight sectors, of which the hidden location of the eighth is revealed in
plate 5. At points interior to those sectors {S4(a), S4(x, y, y), S4(a, x, y, y)}—
which, remember, describe the the expected mean 4-step progress of {A, B, C}
walkers, respectively—acquire non-zero values, and as one ranges over the
sectors those appear with all 23 = 8 possible sign combinations. The
representative sector points indicated in plate 6 have coordinates

Sector a x y
• 0.495 0.20 0.83
• 0.495 0.70 0.10
• 0.495 0.87 0.10
• 0.495 0.98 0.10

at which the respective 4-step S-functions assume these values:
Sector SA,4 SB,4 SC,4

• −0.040 +0.298 −0.326
• −0.040 −0.908 −0.450
• −0.040 −0.259 +0.453
• −0.040 +0.162 +1.064
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Moving the location of the a-section to the other side of a = 1
2 exposes the other

four sectors; holding the {x, y} parameters at their former values, we have

Sector a x y
•• 0.505 0.20 0.83
•• 0.505 0.70 0.10
•• 0.505 0.87 0.10
•• 0.505 0.98 0.10

Sector SA,4 SB,4 SC,4

•• +0.040 +0.298 −0.269
•• +0.040 −0.908 −0.385
•• +0.040 −0.259 +0.498
•• +0.040 +0.162 +1.093

“Parrondo’s phenomenon” is evident in sector • , where SC,4 is positive
though SA,4 and SB,4 are both negative (lose ∗ lose = win), and in sector •• ,
where SC,4 is negative though SA,4 and SB,4 are both positive (win ∗win = lose).
In all other sectors the sign of SC,4 either (i) conforms to the shared sign of
SA,4 and SB,4 or (ii) can be attributed to the predominance of SA,4 else SB,4.

As we ascend to higher orders we find, however (plate 7), that the
volumes of the two “Parrondo sectors” is progressively reduced, and that in the
asymptotic limit n→∞ (plate 8) they disappear altogether, evaporate without
residue. This because the asymptotic null surfaces

S(a) = 0 : entails a = 1
2

S(x, y, y) = 0
S(a, x, y, y) = 0

intersect not on three curves but on a single/shared curve (and so partition the
cube into not eight but only six sectors), as follows analytically from

P( 1
2 , x, y, y) = 3

4 (−1 + x + 2y − 2xy − y2 + 2xy2) = 1
4P(x, y, y)

which is a special instance of the more general statement

P( 1
2 , x, y, z) = 1

4P(x, y, z)

The asymptotic extinction of Parrondo’s phenomenon (so far as it relates
to A, B and C = AB-generated walks on the unbounded lattice Z) stands in
stark contrast to the result reported in the literature,6,7 and in contrast also to
the result obtained when one looks (Parrondo’s Ratchet I ) to such walks on the
cyclic graph of order 3. We have hit upon what might be called the “Parrondo’s
paradox paradox”—a circumstance that would appear to deprive Parrondo’s
discovery of much of its interest (particularly for those concerned with some of
its conjectured applications, as to the development of investment strategies).
Accepting the correctness on the one hand of the argument developed



22 Parrondo’s Ratchet II

in the preceding pages, and the correctness on the other hand of the arguments
developed in the literature, we are forced to the conclusion that the arguments
in question address and resolve distinct problems. We acquire an obligation—
which I will not attempt here to fulfill—to identify the distinction.

Generalizations and limitations. “Mayer’s method” can in principle be used
to develop the functions Sn(x1, x2, . . . , xp) that pertain to walks generated by
B-matrices with period p > 3. But one would in such cases be led (see again
(13) and (17)) to p×p Markovian matrices Q with spectra {1, λ2, . . . λp} which
generally defy analytic description (though it would remain an option to proceed
case-by-case numerically). One is therefore prevented from writing closed-form
analytic descriptions of the left/right eigenvectors and associated projection
matrices {P1, P2, . . . , Pp}. One is left with a set of attractive general formulæ
to which one cannot ascribe specific meaning (except numerically, which is to
say: pointwise, and pointwise information is not sufficient to support the “null
surface” concept). And even if it were possible to write Sn(x1, x2, . . . , xp) = 0,
graphic display requires sectioning that becomes ever more information-lossy
as p increases beyond p = 3.

It is, of course, possible to contemplate walks (whether on the infinite
lattice or on finite graphs) that are generated by more complex composite
structures C = A1A2 · · ·Am.

We have considered composite walks of the form ABABAB · · ·AB . The
literature reports—and low-order naive-method experiments seem to confirm—
that Perrondo’s phenomenon persists even when the A and B-generators are
randomly rearranged. Here I point out that Mayer’s method is so specific in its
details—so “rigid”—as to be ill-adapted to exploration of the randomization
question.
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PLATE 1 (pages 5 & 12): Shown above are the qualitatively similar low-order
null surfaces that arise from B-walks, solutions of

Sn(x, y, z) = 0 : n = 1, 3, 5, 7

The interleaved null surfaces that arise in even order are qualitatively distinct,
and so similar to one another that in service of clarity I show only the surface
of order 8. Colored spheres •, •, • mark unit points on the the x, y and z axes,
respectively. A gray sphere • locates the origin; Sn(x, y, z) is negative on the
origin side, positive on the opposite side of the null surface. Common to all
such surfaces is the scribed line (shown in red) at x = 1

2 .

PLATE 2 (page 14): The asymptotic surface that locates the solutions of

S(x, y, z) = 0

which is well approximated already at order 8. The {x, y, z} -symmetry that is
achieved asymptotically results now in three scribed lines (red) that partition
the surface into two sets of three congruent sectors.

PLATE 3 (page 20): Shown above are the qualitatively similar low-order null
curves that arise from B-walks with z = y, solutions of

Sn(x, y, y) = 0 : n = 1, 3, 5, 7

The null curves that arise in even order (n = 2, 4, 6, 8) comprise a qualitatively
distinct population, shown below. The red curve arises from the asymptotic
condition

S(x, y, y) = 0

As before, •, •, • locate the origin and unit points on the x and y -axes.

PLATE 4 (page 20): The null surfaces that arise from 4-step A, B and C-walks
are seen to partition the unit cube into 8 sectors.

PLATE 5 (page 20): The preceding figure, subjected now to the constraint a ! 1
2 ,

in which four sectors are now more clearly evident. The orange sphere • marks
the point a = 1

2 on the a-axis, and the yellow sphere locates the center of the
unit cube.

PLATE 6 (page 20): The preceding figure, sectioned at a = 0.495, with the
solutions of

S4(x, y, y) = 0 shown in blue
S4(0.495, x, y, y) = 0 shown in red

Representative points used in the text are indicated by colored bullets. The red
bullet • identifies the “Parrondo sector.”

PLATE 7 (page 21): 8th-order version of plate 5. Note the reduced volume of
the “Parrondo sector.”
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PLATE 8 (page 21): Shown above, the null surfaces that arise from A, B and
C-walks in the asymptotic limit—solutions of

S(a) = 0
S(x, y, y) = 0

S(a, x, y, y) = 0

The surfaces intersect on a single curve, and partition the unit cube (not into
eight but) into only six sectors. Those facts are more vividly evident in the
lower figure, where a has been constrained to the interval [0, 1

2 ]. The curves
shown in plate 6 have become coincident, squeezing the sectors marked • and
• out of existence, with the consequence that Parrondo’s phenomenon has been
extinguished . Is it remarkable that this figure so closely resembles the figure
displayed as plate 2 in Parrondo’s Ratchet I ?
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ADDENDUM 33

Remarks concerning the “Multinomial Similarity Problem.” We have several times
encountered lists14 of multinomials of regularly ascending order and rapidly
ascending length that when set equal to zero and plotted give rise to null
curves/surfaces that are seen to be evermore similar and seemingly to approach
limiting forms asymptotically. Our problem:15 How to recognize/anticipate/
account for that fact by examination of the multinomials themselves, without
reference to the graphic evidence? The solution of that problem continues to
elude me. I record here some elementary observations in the hope that they
may prove relevant to its ultimate solution.

But Mayer’s method led on pages 9-12 and 17 to constructions that permit
one to display Sn as a sum of terms that are generated by an iterative process.
I review how that comes about, taking B-walks as my illustrative context. We
had

Sn = anG1 + bnG2 + cnG3

where

hhhn ≡




an

bn

cn



 =
n−1∑

k=0

Qkhhh1 = hhhn−1 + Qn−1hhh1 : n = 1, 2, 3, . . .

with hhh1 =




1
0
0



 , hhh0 = 000

Moreover,
Qn−1hhh1 = Phhh1 +

(
λn−1

2 P2 + λn−1
3 P3

)
hhh1

≡ rrr + sssn−1

which gives

hhh1 = rrr + sss0

hhh2 = 2 rrr + sss0 + sss1

hhh3 = 3 rrr + sss0 + sss1 + sss2

...
hhhn = nrrr + sss0 + sss1 + · · · + sssn−1 (26)

For B-walks we find

rrr = 1
2 + σ




σ
1
1





sss0 = 1
2 + σ




2
−1
−1



 , sss1 = 1
2 + σ




−σ

1 + σ
−1



 , sss2 = 1
2 + σ




−σ
−1

1 + σ





sss3 = 1
2 + σ




σ(1 + σ)

1 − σ − σ2

−1



 , sss4 = 1
2 + σ




−σ

−1 + 2σ + σ2

1 − σ − σ2



 , etc.

14 See pages 4-5, 12, 13, 17, 19 and 20.
15 See again the second of the bulleted questions on page 5.
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which when introduced into (26) are found to give back precisely the hhh -vectors
described on page 12. From which—magically—all the (2 + σ)-denominators
have canceled.

The elements of rrr led on page 13 to the construction of the asymptotic
function

S = σG1 + G2 + G3

2 + σ

Let Sk denote the function that results similarly from the coordinates of sssk. We
then have

Sn = nS + S0 + S1 + · · · + Sn−1 (27)

From |λ2| < 1 and |λ3| < 1 we infer that successive terms in (27) become
progressively less significant. On those same grounds we have

ttt =
∞∑

k=0

sssk =
( 1

1 − λ2
P2 + 1

1 − λ3
P3

)
hhh1 = 1

(2 + σ)2




4 − σ

−1 + σ
−3





giving
∞∑

k=0

Sk = T

T = (4 − σ)G1 + (σ − 1)G2 − 3G3

(2 + σ)2

While the functions Sn(x, y, z) are multinomials of ascending order, the
functions Sk(x, y, z) are ratios of multinomials (numerators of ascending order,
denominators of fixed low order), as also are the functions S(x, y, z) and T(x, y, z)
(numerators and denominators both of fixed low order). By Taylor expansion
those ratios can be displayed as multinomials of infinite order; we at (12) had

σ = 1 − (x + y + z) + (xy + yz + zx)

and by graphic experimentation16 establish that 0 < σ < 1 as {x, y, z} ranges
on the interior of the unit cube. So we have

1
2 + σ

= 1
2 − 1

4σ + 1
8σ2 − 1

16σ3 + 1
32σ4 + · · ·

giving (for example)

S =
(
σG1 + G2 + G3

)
·
(

1
2 − 1

4σ + 1
8σ2 − 1

16σ3 + 1
32σ4 + · · ·

)

Here the leading factor dictates the form of the asymptotic null surface, while
the elements of the second factor serve to refine the off-surface values of S.

The results developed above render explicit the origin of the covert
“similarity structure” implicit in the S-multinomials that were spelled out on
pages 4 and 5 (similar remarks pertain to the multinomials that on page 17 were
derived from C-walks), but they provide no indication of how that structure
might be deduced from direct inspection of the multinomials themselves.

16 Use ContourPlot3D[σ =|| σ0, {x, 0, 1}, {y, 0, 1}, {z, 0, 1}] for assorted values
of σ0 ∈ [0, 1].


